
This is a preprint of an article published in Journal of Computational Biology 

 

 1

 

MASTtreedist: Visualization of Tree Space based on Maximum Agreement Subtree   

 

 

Hong Huang
*1
 and Yongji Li

2
 

 

1
School of Information, University of South Florida, Tampa, FL, 33620 

2
Department of Computer Science, Sun Yetsen University, Guangzhou, China, 510275 

Email: Hong Huang
* 
- honghuang@usf.edu; Yongji Li- dragonlyj@gmail.com; 

*
Correspondent author. 

 

 

 

 

 

 

 

 

 

 

 

 

 



This is a preprint of an article published in Journal of Computational Biology 

 

 2

Abstract 

Phylogenetic tree construction process might produce many candidate trees as the “best 

estimates”. As the number of the constructed phylogenetic trees grows, the need for efficiently 

compare their topological or physical structures arises. One of the tree comparisons software 

tools, the Mesquite’s Tree Set Viz module allows the rapid and efficient visualization of the tree 

comparison distances using Multidimensional Scaling (MDS). Tree-distance measures such as 

Robinson-Foulds (RF) for the topological distance among different trees have been implemented 

in Tree Set Viz. New and sophisticate measures such as Maximum Agreement Subtree (MAST) 

could be continuously built upon Tree Set Viz. It could detect the common substructures among 

trees, and provide more precise information on the similarity of the trees, but it is NP-hard, and 

difficult to implement. In this paper, we present a practical tree-distance metric: MASTtreedist, a 

Maximum Agreement SubTree (MAST) based comparison metric in Mesquite's Tree Set Viz 

Module. In this metric, the efficient optimizations for the Maximum Weight Clique problem are 

applied. The result suggests that the proposed method can efficiently compute the MAST 

distances among trees, and such tree topological differences can be translated as a scatter of 

points in two-dimensional space. We also provide statistical evaluation of provided measure with 

respect to RF using experimental data sets. This new comparison module provides a new tree-

tree pairwise comparison metric based on the differences of the number of MAST leaves among 

constructed phylogenetic trees.  Such a new phylogenetic tree comparison metric improves the 

visualization of taxa differences by discriminating small divergences of subtree structures for 

phylogenetic tree reconstruction. 

 

Availability: http://www.rc.usf.edu/MASTtree                             
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Introduction 

Researchers may collect the data (such as DNA sequences) for each of the different taxa 

(genes, species, etc.), then construct phylogenetic trees. Many tree reconstruction methods could 

produce more than one candidate tree for the input dataset. Very often the number of trees can be 

in the hundreds or thousands (Ayre et al., 2012; Than et al., 2008; Matthews et al., 2010). These 

candidate trees are computed so as to resolve the conflict, summarize the information, and reduce 

the large number of possible solutions to select the appropriate ones for further analysis.  

Multiple tree visualization and construction solutions have been proposed for the management 

and annotations of large and single trees (Ulitsky et al., 2006; Letunic and Bork, 2007; Jordan 

and Piel, 2008; Santamaria and Theron, 2009), as well as comparisons of trees (Trooskens et al., 

2005). Approaches such as Tree Set Viz (Amenta and Klingner, 2002; Hillis et al., 2005) were 

reported for visualizing sets of trees according to their similarity computed by tree-to-tree 

distance metrics (e.g., Robinson-Foulds) using multi-dimensional scaling (MDS). It is a module 

within Mesquite program, which is an open source Java-based platform that allows building and 

loading new analysis modules (Maddison and Maddison, 2012). The results of MDS analyses 

provide a tree-like visual comparison plotted as the MDS ordination plots in 2D representations 

of multidimensional space. The program could also generate a consensus tree by selecting the 

“islands” / “clusters” of the candidate trees shown in the two dimensional “tree space”. 

The Robinson-Foulds (RF) distance metric had been implemented in the Tree Set Viz 

module by summing the number of internal edges (branches) that must be collapsed or removed 

from one tree from another (Robinson and Foulds, 1981).  Since RF computed the number of 
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edges in disagreement, one may wish, however, to conduct tree-to-tree comparison based on the 

number of leaves causing the disagreement by detecting the subtle differences reflecting their 

least common ancestors or their maximum similarity of the subtrees. These two methods differ 

conceptually, and may differ greatly in practice. However, MAST is NP-hard, and 

computationally sophisticated. In this research, we have provided a computationally proficient 

MAST tree-tree comparison metric solution for tree comparisons in Tree Set Viz Module. 

 

Implementation 

MAST can be used either in rooted or unrooted trees (Bryant 1997; Farach et al., 1995; 

Patric and Ostergard, 2001). It has been implemented in PAUP (Swofford, 2012).  The MAST 

method focuses on extracting the common structure in multiple trees (Finden and Goron, 1985), 

whereas the Robinson-Foulds method determines how different the given trees are according to 

the internal edges’ dissimilarity (Robinson and Foulds, 1981), therefore having a computational 

advantage for certain cases of phylogenetic tree reconstruction (Bryant, 1997).  

The proposed MASTtreedist could compare with two trees, T1 and T2, with an 

agreement subtree with the largest possible number of leaves, which is given by: MAST (T1, T2) 

equals  the number of leaves in common for the maximum subtree  in T1 and T2 (Bryant, 1997). 

The MASTtreedist tree to tree pairwise distance metric was implemented in the Tree Set Viz 

module version 2.1 (Hillis et al., 2005) in the Mesquite software package (version 1.01) 

(Maddison and Maddison, 2012). To implement the MASTtreedist module, a parallel folder 

named “MAST” was built along with “Robinson-Foulds” containing the class files for the 

MASTtreedist module. The “MAST” class inherited “NumberFor2Trees” class from the 

Mesquite library. “MAST” class used “NumberFor2Trees” class method: “calculateNumber” to 
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compute the MAST number of leaves for two trees. At the end, MASTtreedist metric returns the 

value of the number of pruning leaves (total taxa minus the MAST leaves for two trees) to 

represent the tree “distance” (indicating similarity of trees), and such “distances” were visualized 

under multi-dimensional-scaling. However, MASTtreedist implementation could be run-time 

slow since it is NP-hard.  

In this application, several techniques were used to optimize the program. MASTtreedist 

has many set operations implemented with a boolean array. The program also takes advantage of 

symmetries for rooted triples and fan triples (see their definitions in Bryant 1997, P 180). A Java 

build-in class “Hashtable” was used to save all possible repeats of the calculation, including the 

least common ancestor (Bryant 1997, p 175). Dynamic programming technique was also applied 

to traverse each pair of tree leaves and determines if the pair had been computed and memorizes 

the result for every pair of leaves in a two-dimensional array.   

The Maximum Weight Clique calculation is NP-hard, and the most time-consuming step. 

In particular, the algorithm conducts combinatorial backward-searching from the end of the array 

containing all the possible subgraphs. If the nodes in the Maximum Weight Clique were stored in 

the front of the array, then the algorithm has to take more time to enumerate almost all possible 

combinations that can be found in the weighted graph. If the nodes in the Maximum Weight 

Clique can be put toward the end of the array, the search can end earlier without considering all 

possible node combinations. 

A key value (integer) was assigned to each node, so that the nodes can be rearranged 

from low to high in accordance with the correspondent key value. The key value is related to the 

weight of the current node, and the degree or weight of adjacent nodes. It can be defined as the 

following: 
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where k represents the current node, adj(k) is the set of adjacent nodes of the current node k, d(i) 

and w(i) are the degree and weight of the node i respectively. In this equation, the run-time 

complexity is )( dnO × , where n is the number of leaves, d is the maximum degree of the tree. It 

is much faster compared to the run-time of Maximum Weight Clique. It also does not affect the 

overall time complexity, then can improve the computing speed for Maximum Weight Clique. 

The run time complexity of the MASTtreedist metric is )( 3 dnnkO +× , where k is the 

total trees for comparison, d is the maximum degree of the internal nodes, and n is the number of 

total leaves of taxon.  

 

Results 

Two datasets: Camp (Cosner et al., 2000; Moret et al., 2001; Stockham et al., 2002), and 

PEVCCA (Stockham et al., 2002; Van de Peer et al., 2000) were obtained to test the MAST 

performance and compare the results with the ones from RF. The Camp dataset is for the 

phylogenetic trees breakpoint reconstruction for the Campanulaceae family (Moret et al., 2001),  

which contains 216 trees on 13 leaves. The PEVCCA datasets in this research contains 168 trees 

on 129 leaves obtained by maximum parsimony searches of the small subunit ribosomal RNA 

sequences (Stockham et al., 2002; Van de Peer et al., 2000).  

The MASTtreedist tree comparison metric can be deployed along with other metrics 

(e.g., Robinson-Foulds) in the Tree Set Viz module within Mesquite. Tree Set Viz module used 

multi-dimensional scaling to represent the relationships between topologies (in this case, the 

topologies as a scatter of points in two-dimensional space. The software arranges the points such 

that they group according to the distance between the trees (distance between trees was 
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calculated using MAST or RF). The tree distances were indicated by their similar levels (similar 

trees are close to each other). The default step size which suggested the speed of positional 

change for each tree during the MDS process in Tree Set Viz was used in all analyses. The MDS 

was allowed to proceed until the stress function stopped changing. To avoid being trapped in 

local optima, this procedure was conducted multiple restarts to make sure that similar results 

were being achieved. We collected the tree-tree distance output generated by MAST and RF 

methods for further analysis.  

For Camps dataset, the MAST and RF arranged the trees based on their distances 

differently. Results from RF shows three clusters of the trees, while the display generated by 

MAST can categorize the trees based on their different number of similar leaves into eight 

groups (Figure 1). Thus the MAST metric can detect detailed topological differences (identify 

trees based on their similar maximum subtrees). Figure 2 showed that the histogram of RF only 

had four unique tree-tree distance values, but MAST had five. This leads to the conclusion that 

MAST is more discriminative than RF in this dataset. MAST is also more reminiscent of the 

normal distribution than RF in this dataset (Figure 2). 

As for the PEVCCA dataset, the scatter of dots in the two-dimensional space for MAST 

demonstrates a dense aggregation of the trees clusters, while the RF shows a sparse distribution 

of the tree clusters (Figure3A). Researchers could use Mesquite to construct a strict consensus 

tree by highlighting the selected tree groups. Figure 3B showed the consensus tree created by RF 

is less informative than the MAST one (multiple splits from a single tree node). In addition, the 

Figure 4 histogram indicated that RF distance values distribution has a similar shape with 

MAST’s, however, MAST results have more unique values (40 different values for MAST, but 

only 29 for RF).  The sparse distribution of trees in RF 2D MDS space is due to the wider range 
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of the tree-tree distance values, since the incremental interval is value of two in RF but one in 

MAST. MAST can distinguish the subgroups while RF could not detect due to having more tree 

comparison values. RR distance provided less discrimination than MAST distance, also lacking 

robustness in the face of very small changes in certain cases.  

 

Conclusion 

In this paper, we have proposed the MASTtreedist tree comparison metric for measuring 

distance between trees, and provided its evaluations with other measures such as RF. The RF 

distance metric is based on the split decompositions of the two tree topologies and is the number 

of edges that have no conflicts in the other tree structure (Robinson and Foulds, 1981). The new 

measure is the MAST distance metric complement with RF distance method, to enrich the tree 

comparison analysis. MAST describes the number of leaves on the largest subtree that both tree 

structures have in common (Moret et al., 2001).  The MAST metric scores includes a maximal 

subset of taxa for which the subtrees calculated by the input trees in agreement, gives more 

meaningful results in some cases than other tree comparison matrices. This approach is 

particularly useful when a only a few taxa that causing the topological differences among trees, 

thereby providing a means of identifying these small sets of conflicted taxa. 

 It is practical for large tree analysis by optimizing the MAST program running time. Our 

testing data indicated that MASTtreedist metric, though harder to compute, and has theoretical 

advantages to make large-scale tree comparisons to visualize the subtle tree differences (when 

only a few taxa are responsible for the incongruity among trees) in the “tree space” using MDS. 

The program allows the user navigating a set of trees based on their topological similarity, and 

select subsets of trees for further analysis (such as constructing a consensus tree). This approach 
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could be extended to accommodate trees, where users would select trees for new tree 

reconstruction. 
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Figure 1. The phylogenetic trees distances (computed by MASTtreedist) were displayed as 

white dots in the 2-D spaces using the Camps dataset. MASTtreedist (left) metric showed more 

discriminative (identify more clusters) than Robinson-Foulds (right). Input data (“Camp.nex”) 

can be found in website http://rc.usf.edu/MASTtree.  

 

 

Figure 2. Comparison of distribution of MAST and RF. Comparison of RF dissimilarity measure 

with MAST, showing that the percentages for number of obtained pairs of trees (y axis) with 

certain distance values (x axis) using Camp dataset. 
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Figure 3A. The phylogenetic trees distances (computed by MASTtreedist) were displayed as 

white dots in the 2-D spaces using the Camps dataset. MASTtreedist (left) metric showed more 

discriminative (identify more clusters) than Robinson-Foulds (right). Input data 

(“PEVCCA.nex”) can be found in website http://rc.usf.edu/MASTtree.  
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Figure 3B.  Strict consensus trees were created in the MDS space computed by MAST (left) 

metric or RF (right). MAST could further break a tree group into multiple subgroups but RF 

cannot. These subgroups are belonged to a sparse, indistinguishable tree group in RF (right). The 

MAST consensus tree demonstrate less ambiguous information in compared to the RF one. The 

RF consensus tree was produced from 34 selected trees from an indiscernible group. The MAST 

consensus tree, however was created from a distinct subgroup (8 of 34 trees). The ambiguous 

relationships among tree leaves were highlighted as red. 
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Figure 4. Comparison of distribution of MAST and RF. Comparison of RF dissimilarity measure 

with MAST, showing that the percentages for number of obtained pairs of trees (y axis) with 

certain distance values (x axis) using PEVCCA dataset. 
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