
AIMS Public Health, 9(4): 703–717. 

DOI:10.3934/publichealth.2022049 

Received: 20 April 2022 

Revised: 17 August 2022 

Accepted: 01 September 2022 

Published: 14 October 2022 

http://www.aimspress.com/journal/aimsph 

 

Research article 

Temporal dynamics for areal unit-based co-occurrence COVID-19 

trajectories 

Gabriel Owusu1, Han Yu1,* and Hong Huang2 

1 Department of Applied Statistics and Research Methods, University of Northern Colorado, Greeley, 

CO 80639, USA 
2 School of Information, University of South Florida, Tampa, FL, 33620, USA 

* Correspondence: Email: han.yu@unco.edu. 

Abstract: The dynamic mechanism of the COVID-19 pandemic has been studied for disease 

prevention and health protection through areal unit-based log-linear Poisson processes to understand 

the outbreak of the virus with confirmed daily empirical cases. The predictor of the evolution is 

structured as a function of a short-term dependence and a long-term trend to identify the pattern of 

exponential growth in the main epicenters of the virus. The study provides insight into the possible 

pandemic path of each areal unit and a guide to drive policymaking on preventive measures that can 

be applied or relaxed to mitigate the spread of the virus. It is significant that knowing the trend of the 

virus is very helpful for institutions and organizations in terms of instituting resources and measures 

to help provide a safe working environment and support for all workers/staff/students. 
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1. Introduction 

COVID-19 has spread throughout the world. The pandemic has had a significant impact on human 

life and the economy. In the course of history, as mankind became more civilized, constructing routes 

to connect nations and cities and forging inter-city and international trades, more pandemics began to 

spread quickly when there was an outbreak. Humans are not the only living organism that experiences 

pandemics, as other living organisms such as plants and animals also at some point have experienced 
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some form of a pandemic. Some of the pandemics in the last century include the Spanish flu, Asian 

flu, AIDS pandemic, H1N1 flu pandemic, West Africa Ebola epidemic, the ZIKA virus epidemic and 

now the novel coronavirus (COVID-19). Coronaviruses were initially found to be caused by an 

infectious bronchitis virus in the 1930s resulting from an acute respiratory infection of domesticated 

chickens [1]. 

In the 1960s, human coronaviruses were found [2]. In the UK and the United States of America, 

they were isolated by two processes [3]. A new common cold virus B814 was isolated from a boy by 

Kendall, Malcom Byone and David Tyrrell from the common cold unit of the English Medicine Board 

in 1960 [3]. The virus could not be cultivated using standard techniques, i.e., with rhinoviruses, 

adenoviruses and other known frequent cold viruses that are successfully grown. Bypassing it through 

the organ culture of the human embryonic trachea in 1965, Tyrrell and Byone cultivated the new virus 

successfully [4]. A new method of cultivation was introduced [5]. The isolated virus inoculated in 

volunteers caused a cold and was inactivated in a lipid envelope by ether. 

More than 536 million confirmed cases worldwide, including almost 6.3 million deaths, have been 

recorded since its discovery in December 2019 to June 2022 [6] COVID-19’s apparent ability to easily 

spread and cause serious disease in older adults and patients with existing medical conditions are 

worrying [7]. Coronaviruses are famous for modifying and recombining [8]. Since the first report, the 

SARS-CoV-2 genomic sequence has changed. Some scientists believe that there are two main circulating 

strains of the virus, i.e., the deadly strain “L” and less virulent strain “S” [9]. 

No specific antiviral therapies or COVID-19 vaccines were available in the beginning. Therapies 

have focused mainly on symptomatic and respiratory support according to the protocols issued in the 

various countries, which were following the World Health Organization protocols issued by the health 

authorities [7]. In the 21st century, following a major respiratory syndrome in 2003, COVID-19 has 

become the third novel coronavirus to cause a widespread epidemic [10]. 

COVID-19 has a high level of transmission, not only due to the social and economic risk 

factors [11−15], but also through sewage, watercourses and other environmental compartments [16]. 

Recent research found that countries with good governance and high public health spending 

implemented the vaccination campaign more quickly and were more successful in controlling the 

spread of infection and preventing the collapse of the national health system [17]. At the city level, 

similar findings have shown that the more developed cities and areas showed lower risk of death 

from COVID-19 [18]. COVID-19 appears to have created conditions favorable to policy changes, 

driving improvements in crisis preparedness [19]. Recent research also showed that socioeconomic 

factors, ethnicity, education and inequality impact county-level COVID-19 mortality [20]. 

Lockdown policy measures hinder mobility [21], and the frequency of patients and severe symptoms 

requiring hospitalization rise with age [22]. Differences in Asian and European epidemiology may 

impact disease spread and mortality [23]. 

To assess the effects of the preventive measures already taken in different areas and eventually 

prevent the COVID-19 pandemic from effectively spreading, it is useful to initiate an areal unit-based 

study of the dynamics of COVID-19 to explore and understand the dynamic process of virus outbreak 

through areal unit-based temporal modeling that is amenable for developing further theoretical analysis 

in hierarchical dynamic spatiotemporal modeling and inference; this is because it would allow for 

examining multiple areal units and considering multivariate interaction. In contrast to the previous 

studies that used the data of earlier periods of the spread, i.e., before we have reached equilibrium and 

when most governments, institutions and organizations were not ready to take intervention measures 
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when vaccines were not popular, we chose to use the daily COVID-19 case data most recently available 

until June 2022 with a wider time span; thus, the data can include the up-to-date information regarding 

preventive intervention measures such as social distancing and vaccination and their effectiveness. We 

also trained the areal unit-based models for different countries under unobserved heterogeneous 

environments in our study to obtain more robust scientific insight into the nonlinear dynamics of the 

outbreak of the COVID-19 pandemic, which has resulted in enormous personal and societal losses. 

The dynamics learned from the richer empirical cases available until June 2022 can be applied to 

illustrate close or exact values for new cases in areal units, assess potential intervention assistance in 

reducing virus spread and drive policy decisions regarding virus spread mitigation. 

The rest of the paper is organized as follows. Section 2 introduces the COVID-19 data collection 

method and variables in the study. The proposed models and methods for the study are presented in 

Section 3. Our findings are summarized in Section 4, followed by the discussion in Section 5. The 

paper ends with conclusions in Section 6. 

2. Data collection and variables 

The data source is the COVID-19 Data Repository of the Center for Systems Science and 

Engineering at Johns Hopkins University, from which we extracted the total confirmed cases, 

confirmed deaths and testing information from January 31, 2019 to June 30, 2022. Table 1 provides a 

description of the extracted datasets for the study with their columns.  

Table 1. Datasets. 

Dataset Descriptions Columns 

time_series_covid19_confirmed_global.csv Time‐series data of 

confirmed cases 

Province/state, Country/Region 

Latitude, Longitude, Date. 

time_series_covid19_deaths_global.csv Time‐series data of death 

cases 

Province/state, Country/Region 

Latitude, Longitude, Date. 

time_series_covid19_recovered_global.csv Time‐series data of 

recovered cases 

Province/state, Country/Region 

Latitude, Longitude, Date. 

Table 1 shows variable descriptions of the datasets that were used for the study. The first dataset 

was the total confirmed cases of COVID-19, where the counts included probable cases, where reported. 

The second dataset was the total death cases reported, and the last dataset was counts of recovered 

cases. All datasets start from the time that the first case was recorded and end on June 30, 2022. Each 

dataset contained the covariate information of the province/state, country/region latitude and longitude 

where the cases were recorded. Province/state is the province or state of the observation, 

country/region is the country or region of observation, latitude is the latitude of the observed country 

or region, longitude is the longitude of the observed country or region and date gives the dates of 

confirmed cases/deaths/recovered cases that were reported till June 30, 2022. 

3. Models and data analysis procedure 

Many mathematical and statistical models and methods have been applied to study the dynamics 

of COVID-19. Specifically, regression analysis was conducted for the effects of social and economic 

risk factors [24−28], time-series models were utilized to deal with temporal dependency throughout 
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the pandemic [29,30] and spatial models have been employed for understanding the diffusion of 

COVID-19 spread [31]. Other recent studies attempted to build efficient methods that incorporate both 

time and space effects in order to model COVID-19’s dynamics [32−35]. 

Agosto and Giudici ([36]) employed a Poisson autoregressive (PAR) model to understand 

COVID-19 contagion dynamics. The earlier cases of COVID-19 from China, Iran, South Korea and 

Italy were used to train the three different models: classical exponential model, PAR model and PAR 

model with covariates. The root mean square error and mean percentage error were used for model 

selection from the three considered models. The PAR model outperforms the other two models, and 

this is consistent with our model for this study. Kharroubi ([37]) worked on modeling and predicting 

the spread of COVID-19 in Lebanon from a Bayesian alternative. Two different models were proposed 

and implemented by using Bayesian Markov chain Monte Carlo simulation methods: a PAR model as 

a function of a short-term dependence only, and a PAR model as a function of both a short-term 

dependence and a long-term dependence. The two models were compared in terms of their predictive 

ability by using the root mean square error and deviance information criterion (DIC). The PAR models 

that allow the capture of both short- and long-term memory effects performed better for all criteria. 

• Log-Linear Poisson Model  

The reported count of new cases 𝑌𝑡 at day 𝑡 in the areal unit s was assumed to follow a conditional 

Poisson distribution: 

𝑌𝑠𝑡 |ℱ𝑠,𝑡−1
𝑌,𝜆 ∼  𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑠𝑡), 

where 𝐹𝑠,𝑡−1
𝑌,𝜆

 denotes the σ-field generated by {𝑌𝑠0, . . . , 𝑌𝑠,𝑡−1, 𝜆𝑠0}, i.e., 𝐹𝑠𝑡
𝑌,𝜆 = 𝜎(𝑌𝑠𝑟 , 𝑟 ≤ 𝑡, 𝜆𝑠0), and 

{𝜆𝑠𝑡} is a Poisson intensity process with the dependence structure  

𝑙𝑜𝑔(𝜆𝑠𝑡) = 𝑘 + 𝛼𝑙𝑜𝑔(1 + 𝑌𝑠,𝑡−1) + 𝛽𝑙𝑜𝑔(𝜆𝑠,𝑡−1),                         (1) 

where 𝑘 ∈ 𝑅 is the intercept term, 𝛼 ∈ 𝑅 and 𝛽 ∈ 𝑅 express the dependence of the expected number 

of new infections, 𝜆𝑠𝑡 , on the past observed counts 𝑦𝑠𝑡−1of new infections and the past expected 

number of infections 𝜆𝑠,𝑡−1 in the areal unit s, respectively. In other words, the short-term dependence 

is captured by 𝛼, while the long-term trend on all past values of the observed process is represented by 

𝛽. Model (1) is expected to be more parsimonious than the model which includes higher lags of 

𝑙𝑜𝑔(𝑌𝑠𝑡 + 1) , but without the feedback mechanism introduced by 𝜆𝑠𝑡 . The inclusion of the 𝛽 

component is analogous to moving from an ARCH (autoregressive conditionally heteroscedastic [38]) 

to a GARCH (generalized autoregressive conditionally heteroscedastic [39]) model using Gaussian 

processes, and it allows us to capture long-term memory effects.  

Additionally, 𝑙𝑜𝑔(1 + 𝑌𝑠,𝑡−1), instead of 𝑙𝑜𝑔(𝑌𝑠,𝑡−1), is included to avoid the ill-defined number 

on the days when there are no reported cases. The log-linear autoregression predictor (1) can 

accommodate both positive and negative association, as well as include time-dependent covariates in 

a straightforward manner. 

If 𝑌𝑠𝑡 𝑖𝑠 formulated as the number of events 𝑁𝑠𝑡(𝜆𝑠𝑡) of a Poisson process 𝑁𝑠𝑡(·) of unit intensity 

in the time interval [0, 𝜆𝑡] for each time point t in the areal unit s; then, 𝑌𝑠𝑡 can be explicitly considered 

as samples from a sequence of independent Poisson processes of unit intensity {𝑁𝑠𝑡(·) , t=1, 2, …} 

given 𝑣𝑠𝑡 ≡ 𝑙𝑜𝑔𝜆𝑠𝑡. The model (1) is therefore represented as the following hierarchical log-linear 

autoregressive model (𝑌𝑠𝑡, 𝑣𝑠𝑡): 
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𝑌𝑠𝑡 = 𝑁𝑠𝑡(𝜆𝑠𝑡), 𝑣𝑠𝑡 = 𝑑 + 𝑎𝑣𝑠,𝑡−1 + 𝑏𝑙𝑜𝑔(𝑌𝑠,𝑡−1 + 1), 𝑡 ≥ 1,         (2), 

where both 𝑣𝑠0 and 𝑌𝑠0 are fixed in the areal unit s. The first part of (2) is the observation model, and 

the second part of (2) is the latent process model for the underlying dynamic mechanisms. The 

parameters 𝑑, 𝑎, 𝑏 belong to 𝑅, but restrictions on the parameter space can be imposed so that a central 

limit theory for {(𝑌𝑠𝑡 , 𝑣𝑠𝑡)} can be developed.  The choice of the log function for the lagged values of 

the response 𝑌𝑠,𝑡−1 is based on the following consideration.  

Consider a model like (2), but with 𝑌𝑠,𝑡−1 included instead of 𝑙𝑜𝑔(𝑌𝑠,𝑡−1 + 1): 

𝑌𝑠𝑡|𝐹𝑠,𝑡−1
𝑌,𝑣 ~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑠𝑡), 𝑣𝑠𝑡 = 𝑑 + 𝑎𝑣𝑠,𝑡−1 + 𝑏𝑌𝑠,𝑡−1; 

then, 

𝜆𝑠𝑡 = 𝑒𝑥𝑝(𝑑)𝜆𝑠,𝑡−1
𝑎 𝑒𝑥𝑝(𝑏𝑌𝑠,𝑡−1). 

Therefore, the stability of the above system is guaranteed only when 𝑏 < 0. Otherwise, the 

process 𝜆𝑠𝑡 increases exponentially fast. Hence, only a negative correlation can be introduced by such 

a model. However, (2) allows for a positive (negative) correlation by allowing the parameter 𝑏 to take 

positive (negative) values. 

We will work with the latent canonical link process {𝑣𝑠𝑡}. Note that the latent areal unit-based 

log-intensity process {𝑣𝑠𝑡} of (2) is expressed as  

𝑣𝑠𝑡 = 𝑑
1 − 𝑎𝑡

1 − 𝑎
+ 𝑎𝑡𝑣𝑠0 + 𝑏 ∑ 𝑎𝑖𝑙𝑜𝑔(1 + 𝑌𝑠,𝑡−𝑖−1)         (3)

𝑡−1

𝑖=0

 

after repeated substitution. Therefore, the hidden process model 𝑣𝑠𝑡 is determined by past functions of 

lagged responses. Both the data process { 𝑌𝑡} and the latent process { 𝜆𝑡 } given areal unit s is 

geometrically ergodic ([40]). 

• Likelihood Inference 

Suppose that 𝜃  denotes the three-dimensional vector of unknown parameters of Model (2) 

[𝑖. 𝑒. , 𝜃 = (𝑑, 𝑎, 𝑏)′] and write the true value of the parameters as 𝜃0 = (𝑑0, 𝑎0, 𝑏0)′. We suppress the 

index s for the ease of presentation. Then, the conditional likelihood function for 𝜃, given the starting 

value of 𝜆0 = 𝑒𝑥𝑝 (𝑣𝑜) in terms of the observations 𝑌1, … . 𝑌𝑛, is given by  

                                                  𝐿(𝜃) = ∏
𝑒𝑥𝑝(−𝜆𝑡(𝜃))𝜆𝑡

𝑌𝑡(𝜃)

𝑌𝑡!
𝑛
𝑡=1 . 

Hence, the log-likelihood function is given, up to a certain constant, by 

                                      𝑙(𝜃) = ∑ 𝑙𝑡(𝜃) = ∑ (𝑌𝑡𝑣𝑡(𝜃) − 𝑒𝑥𝑝(𝑣𝑡(𝜃)))𝑛
𝑡=1

𝑛
𝑡=1 , 

where 𝑣𝑡(𝜃) = 𝑑 + 𝑎𝑣𝑡−1(𝜃) + 𝑏𝑙𝑜𝑔(1 + 𝑌𝑡−1). The score function is defined by 

𝑆𝑛(𝜃) =
𝜕𝑙(𝜃)

𝜕𝜃
= ∑

𝜕𝑙𝑡(𝜃)

𝜕𝜃
= ∑ (𝑌𝑡 − 𝑒𝑥𝑝(𝑣𝑡(𝜃)))

𝜕𝑣𝑡(𝜃)

𝜕𝜃
𝑛
𝑡=1

𝑛
𝑡=1 , 

where 
𝜕𝑣𝑡

𝜕𝜃
 is a three-dimensional vector with components given by  

𝜕𝑣𝑡

𝜕𝑑
= 1 + 𝑎

𝜕𝑣𝑡−1

𝜕𝑑
,
𝜕𝑣𝑡

𝜕𝑑
= 𝑣𝑡−1 + 𝑎

𝜕𝑣𝑡−1

𝜕𝑎
,
𝜕𝑣𝑡

𝜕𝑏
= 𝑙𝑜𝑔 (1 + 𝑌𝑡−1) + 𝑎

𝜕𝑣𝑡−1

𝜕𝑏
. 
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The solution of the equation 𝑆𝑛(𝜃) = 0 , if it exists, yields the conditional MLE 𝜃  of 

𝜃. Furthermore, the Hessian matrix for Model (2) is obtained by further differentiation of the following 

score equation:  

𝐻𝑛(𝜃) = − ∑
𝜕2𝑙𝑡(𝜃)

𝜕𝜃𝜕𝜃′

𝑛

𝑡=1

 

∑
𝑌𝑡

𝜆𝑡
2(𝜃)

(
𝜕𝜆𝑡(𝜃)

(𝜃)
) (

𝜕𝜆𝑡(𝜃)

𝜕(𝜃)
)

′

− ∑ (
𝑌𝑡

𝜆𝑡(𝜃)
− 1) (

𝜕2𝜆𝑡(𝜃)

𝜕𝜃𝜕𝜃′ )𝑛
𝑡=1

𝑛
𝑡=1 . 

The model (2) can be estimated by a maximum likelihood method ([40]). 

4. Results 

We worked with the data spanning the day the virus was scientifically recorded in Wuhan, China 

until the end of June 30, 2022. Figure 1 shows the areal unit-based trajectories, and Figure 2 shows the 

geographical distribution of the virus by the end of June 30, 2022, with associated Autocorrelation 

Functions (ACFs) (Figure 1 in Appendix). The Pearson correlation between confirmed cases and tests 

performed was found to be significant (correlation = 0.9062, 𝑃 − 𝑣𝑎𝑙𝑢𝑒 = 0.034). 

 

Figure 1. Areal trajectories of confirmed cases per day. 
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Figure 2. Geographical mapping of confirmed cases globally as of June 2022. 

 

Figure 3. Tests, confirmed cases and deaths. 

From Figure 3, the USA has the highest number of COVID-19 cases, followed by India, Brazil, 

Russia, Australia and South Africa, respectively. The country with the highest number of tests per 

million people was again the USA. India was the second country with the highest number of tests, 

followed by Russia and South Africa, respectively. Data were not available for Brazil for that date.  
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Figure 4. Cumulative COVID-19 tests performed. 

Figure 4 shows the trend of tests performed. The graph indicates an increasing trend of tests 

performed as time passed. By May 19, 2022, the USA had the highest number of tests performed and 

South Africa had the lowest number of tests performed. 

 

Figure 5. Cumulative COVID-19 deaths. 

Figure 5 shows the trend of deaths recorded as of June 30, 2022. The USA had the highest 

recorded number of deaths, Brazil had 671,416 deaths recorded, taking the second position, and 

Australia had the fewest deaths.  
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Figure 6. Cumulative COVID-19 confirmed cases. 

Figure 6 shows the total confirmed cases recorded until June 30, 2022. The graph indicates that 

the USA had the highest number of confirmed cases recorded, followed by India, Brazil, Russia, 

Australia, and South Africa, respectively.  

 

Figure 7. Fatality rate for COVID-19. 
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Figure 7 shows that South Africa had the highest fatality rate. Brazil had the second highest 

fatality rate, followed by Russia, India, the USA and Australia, which had the lowest fatality rate. The 

trend of fatality indicates a decreasing trend. The fatality rate was high between March 2020 and June 

2020, but it started to decline from February 2021. 

Table 2 below shows the estimated autoregressive coefficients for the log-linear PAR models and 

its associated 95% confidence intervals. The 𝛼  component in the model indicates the short-term 

dependence on the observed cases from the previous day, and the 𝛽 component represents the long-

term trend component, i.e., the long-term trend. The estimated coefficients until June 30, 2022 indicate 

the presence of both short-term dependence on the previous cases and a feedback mechanism for the 

countries under study; however, only the presence of a long-term trend and no substantial short-term 

dependence was observed for Russia; 𝛼 > 𝛽 (Table 2) in the USA, South Africa and Australia, and 

𝛽 > 𝛼 (Table 2) in India, Brazil and Russia. 

Table 2．Areal unit-based parameter estimates of confirmed cases. 

  Estimate  Std. error CI (lower) CI (upper) AIC  

USA (Intercept) 0.253 0.000406 0.252 0.254 18290779.0 

 𝛽 0.264 0.000159 0.264 0.265  

 𝛼 0.715 0.000171 0.715 0.716  

INDIA (Intercept) 0.706 2.20*10−3 7.02*10−1 7.10*10−1 1527702.0 

 𝛽 0.571 8.20*10−4 5.70*10−1 5.73*10−1  

 𝛼 0.360 8.49*10−4 3.58*10−10 3.62*10−1  

SOUTH AFRICA (Intercept) 2.680 2.20*10−3 7.02*10−1 7.10*10−1 842091.2 

 𝛽 0.213 8.20*10−4 5.70*10−1 5.73*10−1  

 𝛼 0.435 8.49*10−4 3.58*10−10 3.62*10−1  

BRAZIL (Intercept) 9.650 2.20*10−3 7.02*10−1 7.10*10−1 12592541.0 

 𝛽 0.250 8.20*10−4 5.70*10−1 5.73*10−1  

 𝛼 −0.222 8.49*10−4 3.58*10−10 3.62*10−1  

AUSTRALIA (Intercept) 0.657 2.20*10−3 7.02*10−1 7.10*10−1 1639427.0 

 𝛽 0.249 8.20*10−4 5.70*10−1 5.73*10−1  

 𝛼 0.682 8.49*10−4 3.58*10−10 3.62*10−1  

RUSSIA (Intercept) 0.376 2.20*10−3 7.02*10−1 7.10*10−1 70869.0 

 𝛽 0.895 8.20*10−4 5.70*10−1 5.73*10−1  

 𝛼 0.065 8.49*10−4 3.58*10−10 3.62*10−1  

5. Discussion 

In the USA, if the expected number of new cases for yesterday was close to zero, 100 new cases 

observed the day before would generate about 26 new expected cases today. If no cases were observed 

yesterday, an expectation of 100 new cases for yesterday generates approximately 3 new expected 

cases today, based on the value estimated for 𝛽. Furthermore, we note that the AIC was relatively high 

for the goodness-of-fit; particularly, it was the highest among all of the countries. In general, we 

anticipated a lower AIC for the model. 

In the case of India, if the expectation of new cases for the previous day was close to zero, 100 

new cases observed the day before would generate about 5 new expected cases today. If no cases were 
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observed yesterday, an expectation of 100 new cases for the previous day generates approximately 14 

new expected cases today. 

In South Africa, if the previous day’s expected number of new cases was close to zero, 100 new 

cases observed the previous day would generate about 7 new expected cases today. If no cases were 

observed yesterday, an expectation of 100 new cases for the previous day generates approximately 3 

new expected cases today. South Africa had one of the lowest AICs of any country. 

For Brazil, if the previous day’s expected number of new cases was close to zero, 100 new cases 

observed the previous day would generate about 1 new expected case today. If no cases were observed 

yesterday, an expectation of 100 new cases for the previous day generates approximately 3 new 

expected cases today. 

In the case of Australia, if the previous day’s expected number of new cases was close to zero, 

100 new cases observed the previous day would generate about 23 new expected cases today. If no 

cases were observed yesterday, an expectation of 100 new cases for the previous day generates 

approximately 3 new expected cases today. 

Finally, for Russia, if the previous day’s expected number of new cases was close to zero, 100 

new cases observed the previous day would generate about 2 new expected cases today. If no cases 

were observed yesterday, an expectation of 100 new cases for the previous day generates 

approximately 62 new expected cases today. Russia’s AIC appears to be the best because it is the 

lowest of the countries. 

According to the research, if the expected number of new cases for the previous day was close to 

zero, Russia will have the most cases today, with Australia, South Africa and Brazil having the fewest. 

The study also found that the fatality rate was high in South Africa and Brazil. Australia had the lowest 

fatality rate among the six countries. The COVID-19 strains rapidly evolved from Alpha to Delta, then 

to Omicron; this could be attributed to different country-based public health non-pharmaceutical 

policies. As compared to other pandemics, the COVID-19 pandemic has one of the lowest fatality rates 

(3.4%). Severe acute respiratory syndrome (SARS) has been associated with a fatality rate of 15%, 

and Ebola has been associated with a fatality rate of 50%. 

This study contributes to the literature by helping us to ascertain a predictive model of the 

dynamics of the outbreak of coronavirus from January 2020 to June 2022. This model-based study can 

aid in predicting the impact of a given intervention on the spread of an outbreak when the preventive 

measures with the data of percentage of vaccinated population taken by each country under study are 

further examined. According to existing research, public relations practitioners and researchers use 

non-pharmaceutical measures such as geographic areas, social economic factors such as income, 

ethnicity and mobility, and public relations strategies and campaigns to reduce COVID-19 cases 

around the world. It also helps policymakers implement measures to provide a conducive environment 

and support for human resources, vaccination against the virus’s spread. Recent research has presented 

the use of a particular state-of-the-art quantitative method with emphasis on the latent log-linear 

Poisson processes modeling of exponential growth for observational studies, which allows for the 

examination of multiple areal units and consideration of multivariate interaction. This will drive the 

policymaking concerning mitigating the spread of the virus. Institutions and organizations will benefit 

significantly since the findings from the model will aid employers and management in instituting 

measures that will help provide a conducive environment and support for all workers/staff/students. It 

will provide guidance to prospective workers in the fields of nursing, teaching, hospitality and 

transport about the nature of their future jobs and what to expect concerning the spread of the virus. 
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6. Conclusion 

This study exploited a class of log-linear Poisson models for modeling the co-occurrences of 

counting processes by using a structure that can parameterize both positive and negative associations. 

The inclusion of the 𝛽 component in counting processes allows us to capture long-term memory 

effects, and it is analogous to moving from an ARCH to a GARCH model using Gaussian processes.  

The current study demonstrated a spatial statistical approach capable of surveying multiple areal 

units (at this time, focusing on data at the country level) and supporting multivariate interaction. It 

can be used to incorporate other public health-related parameters for further analysis at a finer-

grained areal level, such as city or county. Other socioeconomic variables, such as ethnicity, gender, 

health and mobility [10,22], can be examined alongside this statistical model. To understand 

pandemic spreading and disease control, environmental and geographical factors such as weather, 

temperatures, sewage and watercourses can be considered together. New data sources derived from 

wastewater location-based COVID-19 detection, as well as public health data based on geographic 

units, can be combined to analyze virus spread patterns and provide recommendations for health, 

crisis management and social policies, as well as how nations can prevent future pandemics through 

vaccination and non-pharmaceutical interventions in the context of good governance. 

Although the temporal dependence was taken into account, the analysis relies on the assumption 

of spatial independence on the areal units based on the selection of each areal unit from distinct 

continents to mitigate the spatial dependence. In terms of academia, this research study serves as our 

starting point for spatiotemporal dependence in the coming research on the complexity and change 

points of spatiotemporal dynamics with respect to continuously indexed space and time through the 

use of high-dimensional statistical methods. The recommendations from the study for future research 

can benefit researchers who wish to delve more into modeling the dynamics of the spread of the 

virus with higher predictive accuracy. 
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