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ABSTRACT
We extend the existing group-based trajectory modeling by propos-
ing the network-based trajectory modeling based on judicious
design and analysis of a spatio-temporal parse network (STPN) as
a representation of neighborhood structure that evolves in time.
The STPN offers a principled qualitative specification for an explicit
paradigm framework to deal with complex real-world problems. The
framework is completed by developing a quantitative specification
of latent field representation tomerge seamlessly onor alongside the
establishedSTPNviahierarchicalmodeling. Themodels adopt spatial
random effects to characterize the heterogeneity and autocorrela-
tion over the locations where nonlinear trajectories were observed.
The trajectories are then investigated in the presence of the opera-
tional constraints of the dependence structure inducedby the spatial
and temporal dimensions. With the framework, complex develop-
mental trajectory problems can be discerned, communicated, diag-
nosed and modeled in a relatively simple way that interpretation
is accessible to nontechnical audiences and quickly comprehensi-
ble to technically sophisticated audiences. The proposedmodeling is
applied to address the challenges of the trajectory modeling of non-
linear dynamics arising from a motivating criminal justice empirical
process.

ARTICLE HISTORY
Received 4 November 2019
Accepted 1 February 2021

KEYWORDS
Developmental trajectory;
group-based trajectory
modeling; network-based
trajectory modeling; Markov
Gaussian random field;
spatial–temporal data

1. Introduction

1.1. Developmental trajectory

Today, the problems with non-negligible spatial and temporal components are ubiquitous
in behavioral, biological or physical sciences. We are now in the era of an ongoing rev-
olution brought about by information and communication technologies. The deluge of
large complex data indexed by space and time, referred to as spatio-temporal (ST) data,
are commonly generated or collected in diverse scientific fields as well as their availability
is increasing in scientific and public data sources. In the future ubiquitous computing soci-
ety, people can receive themost appropriate personalized information for action given their
particular circumstances at any time and in any space [44]. The presence and coupling of
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spatial and temporal information in the ST data introduce novel problems, challenges, and
opportunities for developmental trajectorymodeling, which has broad application fields of
scientific and commercial significance, such as social sciences, neuroscience, epidemiology,
healthcare, agriculture, transportation, and climate science in general and markets, supply
chains, social networks and vehicular networks enabling AI in networking in particular.

Developmental trajectory describes the progression of any behavioral, biological or
physical phenomenon. Data with a time-based dimension provide the empirical foun-
dation for the analysis of developmental trajectories – the evolution of an outcome of
interest over time. Representing, estimating and understanding developmental trajectories
are among themost fundamental and empirical important research topics in the social and
behavioral sciences and medicine [29,31]. Of the research topics in the longitudinal anal-
ysis, many of the most interesting and challenging problems have a qualitative dimension
that allows for potential meaningful subgroups within a population based on some sim-
ilarity measure. For example, psychology, biology and medicine have a long tradition of
taxonomic theorizing about distinctive developmental progressions of subcategories. On
one hand, the research problems with a taxonomic dimension aim to chart out the dis-
tinctive trajectories, to understand what factors account for their distinctiveness and to
test whether individuals following the different trajectories also respond differently to a
treatment, such as a medical intervention, a major life event, such as the birth of a child,
or a political circumstance, such as a distinctive social or economic policy. On the other
hand, these subgroups follow distinctive developmental trajectories that are not identifi-
able ex ante based on some measured set of individual or population characteristics (e.g.
socio-demographic variable or socio-economic status).

1.2. The group-based trajectorymodeling

To analyze the developmental trajectories in criminology, Nagin and Land [30] laid out the
statistical method that has come to be called group-based trajectory modeling (GBTM)
in the criminology literature to address issues related to the ‘hot topic’ of the time – the
criminal career debate. Those issues were: ‘First, is the life course of individual offending
patternsmarked by distinctive periods of quiescence? Second, at the level of the individual,
do offending rates vary systematically with age? In particular, is the age-crime curve single
peaked or flat? Third, are chronic offenders different from less active offenders? Do offend-
ers themselves differ in systematic ways?’ The dominant legacy of Nagin and Land [30]
was not its answers to the specific questions but the methodology itself. GBTM is one of
the few examples of a statistical method with origins in criminology that has come to be
widely used by other substantive disciplines in addition to many applications in crimi-
nology for the longitudinal study of crime phenomena [3,39]. In clinical psychology, the
GBTMs have been applied to understand the etiology and developmental course of a num-
ber of different types of disorders, including depression [7,27], inattention/hyperactivity
[19], post-traumatic stress disorder [35], substance abuse [17], and conduct disorder [33],
to capture heterogeneity in treatment responses to clinical and randomized trials [2,37],
and to facilitate causal inference in epidemiological observational studies [14,15,32]. In
medicine, the GBTMs have been applied to study the developmental course of psychiatric
disorders with target biomarkers such as body mass index [28], cortisol levels [50,51], as
well as indicators of disability in elderly populations [12]. Across all application domains,
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the group-based trajectory statistical method lends itself to the presentation of findings
in the form of easily understood tabular and graphical data summaries. This form of
data summaries has the great advantage of being accessible to nontechnical audiences and
quickly comprehensible to audiences that are technically sophisticated.

1.3. Extension of the group-based trajectorymodeling

The group-based trajectorymodeling is a parametric approach based on the data only with
a time-based dimension. These observed values are considered as independent realizations
of longitudinal trajectories. However, the hypothesis of independence is no longer accept-
able in the presence of the incurred spatial interactions when the observed longitudinal
values are anchored in space. The space might be geographic space, or socio-economic
space, or more commonly network space of a variety of scales. Ignoring the dependen-
cies induced either by the spatial dimension or by the temporal dimension in statistical
analyses can suffer losing essential information and bear the risk of spurious conclusions
regarding significance statements. In other words, in the study where the data correspond
with observing a single process inwhich dependence occurs due to omitted or unmeasured
space-based or time-based processes, one cannot assume that the data are the realiza-
tion of a collection of independent experiments, the typical artificial assumption most
statistical methods rely on. The models without considering spatial component or tem-
poral component may cause omitted-variable bias as a result of attributing the effect of
the omitted covariates loaded from the underlying spatio-temporal confounding factors
to the estimated effects of the included variables. Spatial and temporal correlations among
observations discount the sample size in computing standard errors or posterior standard
deviations for targeted structural fixed effects in statistical inference under the departures
from the independence assumption. The departures seriously affect standard statistical
procedures that assume independent observations [4]. Thus the spatial information, as well
as the temporal information, is an indispensable key component in modeling and under-
standing the observed data either of or from a complex system conceptualized as a network
in the presence of operational constraints and environmental disturbances.

In the past empirical literature, the development of most theoretical work on spatial
analysis has assumed an ideal space. The ideal spaces are convenient for developing pure
theories of spatial stochastic processes. However, they are far from the real world where
events are constrained by the networking of objects in space and time. If trajectory model-
ing and analysis assuming a plane with Euclidean distances is applied to events that occur
on and alongside real spatio-temporal networks, then it is likely to lead to false conclu-
sions [34]. Network representations of units in space and time are becoming extremely
important in practice since they determine the quality of spatio-temporal modeling for a
complex system that involves identifying the spatial and temporal entities or components
and their roles, defining basic or novel types of static and nonlinear dynamic relationships
among the components, and developing effective approaches for discovering the influences
among the components.

To expand the capability of GBTM, a partition-and-group framework is proposed to
accommodate space-based groups of trajectories as well as time-based groups of trajec-
tories. One unique quality of such a study that differentiates ST data from other non-ST
data in the classical statistical analysis literature is the presence of structural dependencies
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among the objects induced by the important and indispensable spatial and temporal
dimensions of the real world. Since spatial or temporal dependency is due to the unknown
or unobserved latent variables, it is more interesting in modeling the covariance function
appropriately to offset the effects of the unobserved variables and get more valid estimate
of a key explanatory variable effect on a phenomenon. The spatio-temporal models include
the two components, a systematic component with available explanatory variables and the
spatial and temporal correlation component, and how the two components interact across
processes and scales of variability. Such spatio-temporal studies enable us to predict big
gaps of unknown values at unmeasured locations, identify unusual regions, forecast values
at future times, and produce maps.

While traditional statistical methods typically rely only on the information contained
in the data, the nature of the complexity of dependence and the paucity of observations for
high granularity of spatio-temporally associated scientific questions requires a framework
of integrating data science methods with the wealth of scientific domain expert insight or
practical experience, often encoded as domain-based prior models to accelerate scientific
discovery from ST data. In this sense, we propose spatio-temporal parse network-based
trajectorymodeling (NBTM) as an extension to the existing GBTM, raising the novel chal-
lenges induced by the coupling of spatial and temporal dependence structure in the today’s
ubiquitous spatio-temporal data.

We propose a nonparametric framework that begins with judicious design and analysis
of a spatio-temporal parse network (STPN) on the positions in the spatio-temporal space
that accommodates the nonlinear developmental trajectories observed in a sequence of
time points. STPN is represented as a hybrid graph of directed and undirected edges con-
necting the nodes structured in Figure 1. Each trajectory of the empirical process on STTP
is the series of events on the nodes along the sequence of time points grouped inside a blue
dashed rectangle in Figure 1 for the dynamics of the empirical process coupled with spa-
tial covariance C(si, sj)which is non-zero if the locations si and sj are neighbors denoted as
si ∼ sj. The role of STPNs is tomake transparent what is the investigator’s understanding as
well as explicit what are scientific queries. STPN enables us to encode an honest assump-
tion for the dynamics of a complex system under study. The more realistic assumption
assumes that the data structure is observed from a single experiment on a sample of objects

Figure 1. The ensemble of nodes in spacetime that induces STPN to accommodate trajectories with
heterogeneity and autocorrelation between paths of nodes enclosed within blue dashed rectangles for
trajectories.



JOURNAL OF APPLIED STATISTICS 1983

structured via a latent spatio-temporal parse network. The stochastic progression of a
phenomenon then can be identified with network-constrained trajectories with the depen-
dence structure induced by both the spatial and temporal dimensions. In other words, as
stated in the First Law of Geography: ‘Everything is related to everything else, but near
things are more related than distant things”, units close to each others in space and time
more likely share a set of latent background conditions as well as some graph characteristics
which are related to the states of interest, so to have similar incidence. STPN is introduced
in the proposed paradigm framework as a base working representation of the complexity of
granularity of real life. By base wemean that it is a null hypothetical constraint characteriz-
ing current state of knowledge that is explicitly defined as a temporally indexed networking
structure transparent for inference and reasoning as well as intuitive contextual interpreta-
tion. Alternative hypothetical networks can be proposed against the null for the discovery
of important substructures at different granularities through a further analysis of network
and assessed against the baseline network to avoid over-partition or under-partition in the
network. Network events consist of on-network events and alongside-network events. We
call a STPN-constrained event or network event for short to the event that occurs on and
alongside a STPN.

The framework is completed by developing a quantitative specification of latent field
representation to merge seamlessly on or alongside the established STPN using Bayesian
hierarchical models (BHMs) for statistical reasoning under uncertainty. The models adopt
spatial random effects to characterize both the autocorrelation and heterogeneity over the
locations where developmental trajectories were observed. The trajectories are treated as
an empirical process that is investigated in the presence of the operational constraints in the
dependence structure induced by the spatial and temporal dimensions of the real world.
Stochastic processes play an important role in scientific inference and interpretation in
various domain applications since it is on the stochastic processes that scientific theo-
ries are postulated [5]. In contrast to the classical statistical modeling that only includes
data model and parameter model, stochastic processes are made explicitly in the network-
based probabilistic representation with less assumption-laden approach, providing a rich
framework to recognize and capture additional sources of uncertainty on the structure of
dependence and heterogeneity over and above ordinary statistical unstructured variation.
In this sense, the STPN-based model is an expressive probabilistic representation of the
spatial dependency structure that evolves through time for the nonlinear trajectories.With
the framework, the problems and challenges of complex developmental trajectories can be
discerned, communicated, diagnosed and modeled in a relatively simple way that contex-
tual interpretation is accessible to nontechnical audiences and quickly comprehensible to
technically sophisticated audiences, which is inherited from the existing GBTM.

Hence the notion of GBTM is appropriately extended to incorporate the spatial dimen-
sion of the real world and accommodate the complexity of the spatio-temporal dependence
structure. Including additional space-based dimension in the existing GBTM allows for
analysis of the interrelationship of heterogeneous trajectories more accurate and tracking
the course of an outcome of interest more spatially coherent in a nonlinear dynamic com-
plex system. In contrast to the existing GBTM assuming data structure generated from a
repetition of independent experiments on a sample of independent units through time for
the sake of simplicity, the proposed NBTM adopts the realistic assumption that the data
structure is observed from a single experiment on a sample of STPN networking units.
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The role of STPN in the probabilistic modeling is to provide convenient, transparent and
explicit means of expressing the substantive assumption, facilitate economical represen-
tation of joint probability functions, facilitate efficient inferences from observations, and
accelerate scientific discovery with ST data. While the proposed NBTM is developed for
the nonlinear dynamics of a complex phenomenon under study as an extension to the
existing GBTM by assuming more realistic assumptions, it raises the novel worthwhile
challenges induced by the coupling of spatial and temporal dependence structure in the
today’s ubiquitous spatio-temporal data. The primary purpose of this article is to present
a real example from our collaborative applied research in criminal justice to illustrate the
challenges of the trajectory modeling arising from the complexity of the nonlinear dynam-
ics of themotivating criminal justice process, along with elaborating the proposed solution
to the challenges through a deep Bayesian hierarchical model, given the uncertainties in
observations, dynamic process, and associated parameters. The article illustrates the limi-
tations with the existingGBTMand shows the advantages of statisticalmodels that account
for spatio-temporal dependence.

The article is structured as follows. Section 2 describes the motivating data. The NBTM
is developed in Section 3. Section 4 presents the methodological and empirical results.
The paper is concluded with a discussion of the statistical and practical implications in
Section 5.

2. The data

The ST data for the research question to the formal social control problem in general
motivated the development of a new method to expand and refine the existing GBTM
that does not address the spatially heterogeneous and correlated trajectories. We will illus-
trate the proposed NBTMwith the ST data to extend the existing GBTM by incorporating
the spatial dimension of the real world. The primary goal is to formulate a substantial
knowledge-based statistical representation with a focus on the nonlinear dynamics of the
procuratorate system through the proposedNBTMto address the novel challenges induced
by the coupling of spatial and temporal information in the ST data.

The criminal justice system of the People’s Republic of China has been evolving under
the prevailing political and economic circumstances from 1949 to 2004 with a major tran-
sition in 1979 from planned economy into a market economy through internal reform and
opening to integrate into the global market economy. The procuratorate subsystem is of
interest in this study due to its significant role in the criminal justice system in China.
The procuratorate subsystem is one of the four important components of the criminal jus-
tice system with the other three components of the public security, the courts, and the
corrections. The major responsibilities of the procuratorate included, but not to be lim-
ited to, supervising the law enforcement, making public prosecution on behalf of the State,
and investigating criminal cases. In addition to its supervisory role over all aspects of civil
government, the government’s procurators are responsible for deciding whether someone
should be arrested and charged.

Our analysis is based on the data of 2004 First National Economic Census on the
inceptions of procuratorate organs for Mainland China, containing information on the
2680 counties of the 31 provinces from 1949 to 2004. Procuratorate organs clustering in
a jurisdiction region tend to share similar characteristics. It is beneficial for borrowing
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Figure 2. Heterogeneous and auto-correlated developmental trajectories.

Figure 3. The dynamical geographical mapping of the developmental trajectories.

strength and reducing computationally cost by aggregating the network-constrained rare
events over administrative areas. The diffusion of developmental trajectories of the organs
is displayed in Figure 2 with increasing within-variability over time. To express data in
an appealing and interpretive way, the geographical mapping of the procuratorate organs
data are displayed in Figure 3 specific to administrative areas, namely, provinces, before
and after the major transition of state policy respectively for diffusion and dynamics. Geo-
graphical map can add vital context that is generally lost if data is viewed only through a
spread sheet and allow the public to get better data interpretation, gain better insight and
stay informed. Heterogeneity coupled with the strong skewness and excess zeros in each
of the areas was observed in Figure 4. The source of heterogeneity is often geographically
due to socio-demographic and socio-economic origins exclusive to each distinct region
in different time periods. The feature of excess zeros is observed in Table 1 that displays
the numbers of zeros versus the total counts of the inceptions across areas. The zero infla-
tion implies that there are two hidden competing states in structure, typical and atypical
trajectories, conceptualized as activity and quiescence over different periods of time.

Although there are qualitative studies comparing criminal justice systems in the crim-
inology literature, the trajectory modeling of criminal justice systems has been underex-
plored in the literature. Neither existing large scale complex data nor existing quantitative
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Figure 4. The distribution of increments for each area with its mean count indicated by a red dashed
line.

Table 1. The distribution of the zero increments versus the associated total counts in 2004.

si Anhui Beijing Chongqing Fujian Gansu Guangdong Guangxi Guizhou

Zeros 24 45 40 34 27 29 34 36
Total 148 31 41 91 130 148 135 90

si Hainan Hebei Heilongjiang Henan Hubei Hunan Jiangsu Jiangxi
Zeros 44 24 24 25 20 20 29 27
Total 26 188 243 179 150 182 119 143

si Jilin Liaoning Neimenggu Ningxia Qinghai Shaanxi Shandong Shanghai
Zeros 30 47 22 33 28 22 40 21
Total 86 153 110 25 146 233 27 163

si Shanxi Sichuan Tianjin Xinjiang Xizang Yunnan Zhejiang
Zeros 39 20 48 31 38 26 33
Total 56 231 25 127 69 166 101

approaches have been considered to study the progression trajectory of a criminal justice
system. To fill the gap, NBTM is proposed to obtain an insight into the most fundamental
problems in criminal justice.

3. Spatio-Temporal parse network-Based trajectory modeling

With the observational data, we elaborated the network-based trajectory modeling with
a representation that allows us to learn about or predict the spatio-temporal process and
focus on new features of the data about which we were unaware.

The NBTM can schematically be represented as a hierarchical model (HM) [5]. For
i = 1, 2, . . . , n,

Data Model : Yi(t)|ηi(t), θd ∼ D(ηi(t), θd), (1)

Latent Random Field : ηi(t) = β0 +
p∑

m=1
βmxmi(t) + ωi(t), (2)
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Dynamic Process : ωi(t) = Mτ (ω(t),�ω) + ξi(t) (3)

Regularization : �ω ∼ π1(θ r), (4)

Residual Process : ξi(t) ∼ π2(θu), (5)

Parameters : θ = (β0,β , θd, θ r, θu) ∼ π(β0,β , θd, θ r, θu). (6)

D(·) in data model (1) is some distribution for data Yi(t) for site si at time t from exponen-
tial family or mixture distributions given the latent random field ηi(t) and parameter θd.
The latent random field (2) contains the spatio-temporal process ω(t) = (ωi(t))ni=1 where
Mτ (·) is an evolution operator of lag τ and ξi(t) is a noise process specified in model (5).
ωi(t) is often over-parameterized and regularized by model (4). β = (β1, . . . ,βp) is the
coefficient vector for the vector of p exogenous covariates xi(t) = (x1i(t), . . . , xpi(t)). The
HM is completed by the prior distribution π(·) specified in model (6) for θ .

3.1. Datamodels: finitemixturemodels

We begin with the assumption on the data generating process. For models where latent
effects are to some extent identified by the specification of their prior distributions gener-
ally involving additional parameters known as hyperparameters, there may be sensitivity
in posterior inferences to the assumed priors. While one strategy known as informal sen-
sitivity analysis is to consider a limited range of alternative priors and assess changes in
inferences, more formal approaches to robustness are to base on non-parametric priors,
or via mixture (‘contamination’) priors. When distinct groups present in the population
can not be identified by settled theory, finite mixture models (FMM) are a ‘niche between
parametric and nonparametric approach to statistical estimation’[26]. Using FMMs allows
a better understanding of the possible relaxations of the baseline assumptionwith the latent
variable(s) as well as the components of the models with substantial scientific knowledge.
For a clean and intuitive illustration, we focus only on the alternative models using FMMs
for different assumptions concerning mixing distributions, resulting in more flexible sam-
pling distributions. A general form of mixing allows the sampling distribution sufficiently
flexible to accommodate any realistic distribution to some desired degree of accuracy.

The trajectory can be considered as a realization fromaPoisson associated process based
on a STPN with the area-specific intensity

λsi(t) = exp{η(si, t)}, i = 1, 2, . . . , n,

where η(s, t) is a latent dynamic random field. We will simplify the notation by using the
index i to denote area si in the following presentation.

We start with the baseline assumption of likelihood function that each spatially indexed
incident is conditionally independent in area si at time period t given the time-varying
area-based intensity rate λi(t)measuring incident proneness. The conditional distribution
of the count of events Yi(t) occurring in a certain area si at a fixed period of time t follows
the Poisson distribution

Yi(t)|λi(t)∼ i.i.d. Poisson(λi(t)). (7)

Model (7) is specified as a baseline model that encodes a state of minimum information
against which other kinds of assumed structural heterogeneous trajectories can be assessed.
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In other words, we begin with a model specification under the assumption of complete
randomness for trajectories and then investigate various kinds of departures from this
hypothesized model by relaxing the assumption. There are often multiple competing alter-
native model specifications arising either from theoretical propositions or from alternative
specifications of the same theory in practically inclined researches.

Although the likelihood function (7) from the exponential family is convenient, it is
not flexible for some real-world problems with extra variation. The variance of the Poisson
distribution is expected to be equal to the mean count of occurrences. As the mean count
increases, the skewness diminishes, and the distribution becomes approximately normal.
When themean count is low, then the data consists ofmostly low values and less frequently
higher values resulting in a distribution with a long right tail. Counts of zeros become
increasingly likely as themean count approaches zero. The fitting of a single Poisson distri-
bution often forces too much structure on the data with extra-Poisson variation problems
such as overdispersion and excess zeros. In practice, count data frequently depart from
the Poisson distribution due to a larger frequency of extreme observations resulting in the
variance considerably greater than themean in the observed distribution called overdisper-
sion. Overdispersion reflects some combination of unexplained variation in the observed
data for regions and dependence structure underlying the observed data.

A mixture of Poisson distributions to address the overdispersion can be represented as
the conditional Poisson-Gamma mixture (also known as negative binomial) model

Yi(t)|λi(t), ζ ∼ i.i.d. Poisson(λi(t)ζ ) and ζ ∼ Gamma(a, b). (8)

We consider zero-inflation as well when the distribution of counts has a much larger
than the expected count of zeros assumed by Poisson distribution. The conditional Pois-
son–Bernoulli mixture model can be used to capture an excess of zeros that cannot be
estimated by Poisson distribution:

Yi(t)|λi(t), δ ∼ i.i.d. Poisson((1 − δ)λi(t)) and δ ∼ Bernoulli(π0), (9)

with hyperparameter π0 as the proportion of extra zeros introduced to capture the two
desired states: activity and quiescence. In other words, the model assumes that the zeros
have two different origins: ‘structural’ origin and ‘sampling’ origin. Structural zeros are
observed due to some specific structure in the data while sampling zeros are due to the
usual Poisson distribution whose zeros are assumed to happen by chance. A uniform prior
for π0 was used if no information is available.

3.2. Processmodels: STPN-based structured trajectorymodeling

To accommodate spatially constrained trajectories, we adopt an appropriate spatio-
temporal parse network on Figure 1 that is a time-varying spatial network. We adopt a
generic structured additive predictor [8] to specify the trajectories over the chain graph
whose topology and/or attributes can change with time,

ηi(t) = Xiβ + bi + γ (t) + δi(t), i = 1, . . . , n, (10)

where bi is the overall spatial random effect at site si, γ (t) the temporally structured trend,
and δi(t) the spatio-temporal interaction, and β = (β0,β1, . . . ,βp)

T the vector of linear
fixed effects of the vector of covariates Xi = (1,Xi1, . . . ,Xip).
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3.2.1. Spatial component
A variety of specifications have been proposed for the latent level of spatial random effects
b = (b1, . . . , bi, . . . , bn)T . We focus on random effects b to account for extra-Poisson
variation or spatial correlation due to unobserved or unmeasured heterogeneity or struc-
tural correlation if the exponential family distribution or associated finite mixture models
are used. Due to inherent sampling variability it is not recommended to inspect crude
estimates directly, but borrow strength over neighboring regions to get more reliable
region-specific estimates. The spatial effect b in the classical Besag-York-Mollié (BYM)
model is decomposed into a sum of an unstructured and a structured spatial component
b=u + v. While the structured spatial effect u represents the fact that outcomes among the
regions close in space are more correlated than among distant regions, the unstructured
spatial effect v represents the clustering information for the regions in the data. It is con-
sidered as a surrogate for unobserved i.i.d. region-specific random effects that can not be
captured by the smooth spatial trend. In our application, the random effects account for
the possible overdispersion caused by unobserved heterogeneity due to regional differences
in local statutes, organization, funding, and policies. Neglecting unobserved heterogeneity
may lead to considerably biased estimates for the remaining effects and false standard error
estimates.

While unstructured spatial random effect component v ∼ N (0, τ−1
v I) with precision

τv accounts for pure oversdispersion due to Poisson distribution assumption, an intrinsic
Gaussian Markov random field (IGMRF) prior with precision τu [43] was assigned to the
structured spatial random effect of a particular region si that depends on the effects of all
neighboring regions as follows,

ui|u−i, τu ∼ N

⎛
⎝ 1
n∂si

∑
j∈∂si

uj,
1

n∂siτu

⎞
⎠ , (11)

where u−i denotes the vector of all spatial effects excluding site si, ∂si contains all the direct
neighbors of si and n∂si = |∂si| is the number of neighbors for site si. The IGMRF compo-
nent tends to produce similar estimates for ui and uj if areas si and sj are geographically
close in addition to an unstructured spatial random effect component vi that accounts
for independent region-specific noise. We consider the notion of neighbors and neigh-
borhoods to use spatial smoothing techniques with shortest path distances constrained to
the established spatio-temporal parse network where the Euclidean distances between two
study regions are not appropriate due to the discreteness in the aggregate data. Two regions
are treated as neighbors if they share a common boundary. The application is restricted to
the prior based on adjacency weights resulting in a sparse structure matrixQ in this paper.
The resulting covariance matrix of b is Var(b|τ−1

u , τ−1
v ) = τ−1

u Q− + τ−1
v I, where Q− is

the generalized inverse of Q.
When the spatial effect bi is decomposed into the spatially structured component ui and

the unstructured component vi in the BYM model, it is not clear to see how the spatially
structured component is distinguished independently from the unstructured component.
This potential confounding makes prior definitions difficult for the hyperparameters of
the two random effects. To address the non-identifiability problem, there are various alter-
native reparameterized models have been proposed using a mixture model structure, in
which the precision parameters of the two components are replaced by a commonprecision
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parameter and a mixing parameter. The mixture model structure distributes the variabil-
ity between the structured and unstructured components. Of the alternative specifications,
the Leroux model and the Dean model are commonly used with only one random effect
component [6,25,49].

However, two issues should be addressed in the mixture model structure. First, the pre-
cision parameter does not represent the marginal precision but is confounded with the
mixing parameter if the spatially structured component is not scaled. The effect of any prior
assigned to the precision parameter thus depends on the graph structure of the application.
Then a given prior is not transferable between different applications if the underlying graph
changes. Second, the choice of hyperpriors for the random effects is not straightforward.
Simpson et al. [46] proposed a new BYM parameterization that accounts for scaling and
provides an intuitive way to define priors by taking the model structure into account. This
new model provides a new way to look at the BYM model and a sensible model formula-
tion where all parameters have a clear interpretation. The model structure is similar to the
Dean model [6], with the crucial modification that the precision parameter is mapped to
themarginal standard deviation. Thismakes the parameters of themodel interpretable and
facilitates assignment of interpretable hyperpriors. The framework of penalized complexity
(PC) priors is applied to formulate prior distributions for the hyperparameters. The spatial
model is thereby seen as a flexible extension of two simpler base models towards which it
will shrink, if not indicated otherwise by the data. The upper level base model assumes a
constant response surface, while the lower level model assumes a varying response surface
over space without spatial autocorrelation.

Riebler et al. [41] introduced a modified BYMmodel that splits the variability indepen-
dently over the spatial random effects to address the identifiability and scaling

b = 1√
τb

(√
1 − φv +

√
φu∗

)

with covariance matrix Var(b|τb,φ) = τ−1
b [(1 − φ)I + φQ−∗ ], where Q−∗ is the precision

of the scaled u∗. In the design of the spatial random effects, the hyperparameters can be
seen independently fromeach other to improve parameter control. Furthermore, the scaled
spatial component facilitates assignment of meaningful hyperpriors andmake these trans-
ferable between spatial applications with different graph structures. The hyperparameters
themselves are used to define flexible extensions of simple base models. Consequently,
penalized complexity priors for these parameters can be derived based on the information-
theoretic distance from the flexible model to the base model, giving priors with clear
interpretation.

3.2.2. Nonlinear dynamics
The temporally structured effect γ (t) is specified dynamically using a set of temporal ran-
dom effects to capture the nonlinear trend with an intrinsic conditional autoregressive
(ICAR) prior on P-splines. P-splines assume that the unknown functions can be approx-
imated by basis functions representation of B-splines,

∑K
k=1 ckBk(t), where K = m+ q

and q is the degree of a polynomial spline defined based on a set of m+ 1 knots tmin =
k0 < k1 < · · · < km = tmax and c = (c1, c2, . . . , cK)T is the vector of unknown coeffi-
cients. The second-order randomwalks of the coefficients was used with smoothing priors
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with precision τγ ,

ck|ck−1, . . . , c1, τγ ∼ N(2ck−1 − ck−2, τ−1
γ ), k = 3, 4, . . . ,K,

and diffuse priors π(c1) ∼ const. and π(c2) ∼ const. for initial values [1,24].

3.2.3. Space–Time interactions
In addition to themain spatial and temporal effects, an interaction between area and time is
modeled through addition of an interaction term δi(t) that combines spatial and temporal
structured effects defined on Figure 1. The interaction would explain differences in the
developmental trajectory for different areas. The parameter vector δ follows a Gaussian
distribution with a precisionmatrix τδRδ , δ ∼ N (0, (τδRδ)

−), where τδ is unknown scalar
whileRδ is the structurematrix, identifying the type of temporal and/or spatial dependence
between the elements of Rδ . There exist various specifications for the structure matrix Rδ .
Knorr-Held (2000) proposed four ways to define the structure matrix [23].

Type I interaction assumes that the two unstructured effects vi (spatial effect) and
γt (temporal effect) interact. The structure matrix for this type is expressed as Rδ =
Rv ⊗ Rγ = I ⊗ I = I. Since both v and γ do not have a spatial or temporal structure, an
identically independent non-informative normal model for δit ∼ N(0, τ−1

δ ) is used.
Type II interaction is specified as the interaction between the structured temporal

main effect γ (t) and the unstructured spatial effect vi with interaction structure matrix
Rδ = Rv ⊗ Rγ , where Rv = I and Rγ is a neighborhood structure that can be defined
through a random walk. Thus, a random walk across time for each area independently
from all other areas is assumed for δit . This implies the parameter vector (δi1, . . . , δiT) has
an autoregressive structure on the time component for ith area, which is independent from
the ones of other elements.

Type III interaction is specified between the unstructured temporal effect γt and the
structured spatial main effect ui. The structure matrix is written as Rδ = Rγ ⊗ Ru, where
Rγ = I and Ru is specified as a CAR neighborhood structure. Thus, the parameters of the
ith time point in {δi1, . . . , δiT} have a spatial structure independent from the other time
points.

Type IV interaction combines spatial and temporal structured effects, namely, ui and
γ (t). The resulting interaction matrix can be written as Rδ = Ru ⊗ Rγ , which is the most
complex interaction structure. The specification of the spatio-temporal interaction com-
bines RW2 for temporal dependence and the BYM model for spatial dependence. Type
IV interaction structure is more meaning than any of the types I, II and III interaction
structures as a representation of neighborhood structure that evolves in time inherent in a
complex phenomenon.

The proposed NBTM with type IV interaction is obtained by assigning priors to all the
hyperparameters as an extra layer of modeling complexity and computational difficulty.
To ensure the computationally tractability and avoid being technically involved though it
might be argued that this is not a good strategy, the model specifications are completed
by starting with heuristic weakly informative inverse Gamma IG(a, b) priors for all the
precisions to obtain a data-driven amount of smoothness using small values of a and b
as a convenient default in the open source software for practical analysis [21,22]. Small
values for a and b correspond to an approximate uniform distribution for log(τ 2) with τ 2



1992 H. YU ET AL.

equivalent to the smoothing parameters in the frequentist approach that controls the trade-
off between smoothness and flexibility. In addition to the common inverse gamma priors
that lead to Gibbs sampling updates, several other alternative prior specifications for the
precision have been suggested as default priors in the statistics literature: scale-dependent
priors [20], penalized complexity priors [46], and half-normal, half-Cauchy or approxi-
mate uniform priors for precision [9,10,16], among others. The selection of appropriate
hyperpriors for the precision parameters is an important topic in all kinds of Bayesian
regression models. The further discussion, such as axiomatic reasoning, about the suit-
ability of the specifications is beyond the scope of this paper. As a sensitivity check, the
model should be re-estimated with different choices for the parameters a and b.

4. Results

We considered the standard Poisson regression models, the Poisson-Gamma mixture
regression models and the Poisson–Bernoulli mixture regression models each with group-
based trajectory modeling (GBTM), spatial modeling (BYM), network-based trajectory
modeling (NBTM) and network-based trajectory modeling with covariates (NBTMC) for
the data.We end up with 12models in total to compare. Bayesian inference was performed
by Markov chain Monte Carlo (MCMC) algorithm implemented in R. We used 520,000
MCMC iterations with a burn-in phase of 20,000 and a thinning parameter of 500. The
simulated values do not show anomalies, upward or downward trends but look like a ran-
dom scatter around a stablemean value, the chain appears to have reached convergence.We
observed that for any lag the autocorrelation is close to zero, suggesting that the simulated
values can be considered almost independent.

Model evaluation is conducted by comparing the relative performance of the competing
candidate models via the information-theoretic approach. Themost commonly usedmea-
sure of model fit based on the deviance for Bayesian hierarchical models is the deviance
information criterion (DIC) used for discriminating between competing data distribu-
tions and predictor structure of the distribution parameters [21], proposed by Spiegelhalter
et al. [46]. DIC is a generalization of the Akaike information criterion (AIC). DIC is
decomposed into two terms: DIC =D(θ) + pD, whereD(θ) is the posterior mean deviance
measuring the fit to the data and pD measures the complexity of the model. We ran three
independent MCMC simulations as suggested by Gilks et al. [11] to avoid the possibility
of the lack of convergence when only one chain is run.We saw that the differences between
DIC values never exceed one unit.

The final results are summarized in Table 2 that are quite encouraging for NBTM.
While the comparison displays a clear advantage of GBTM over spatial modeling, NBTM
significantly outperforms GBTM in the three sampling distributions.With the same struc-
ture of spatial and/or temporal components, a naive data generating distribution directly
from the exponential family is inadequate to accommodate the features of the conditional
sampling distribution of complex dynamics given the spatio-temporal process and the
Poisson–Bernoulli mixture model shows superior fit compared to the other models from
Table 2. Since the Poisson–Bernoulli mixture model accommodates zero inflation in the
data better than any other model being considered, this indicates that the distribution
of the observed trajectories was zero-inflated due to the presence of both structural and
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Table 2. Summary of DICs.

Data generating distribution Modeling DIC pD

Poisson GBTM 34157.78 19.85
BYM 52575.92 30.77
NBTM 3200.56 50.22
NBTMC 3002.66 50.95

Poisson-Gamma GBTM 34157.97 20.10
BYM 52575.92 30.78
NBTM 3200.02 49.97
NBTMC 3001.64 50.39

Poisson–Bernoulli GBTM 33826.37 25.76
BYM 50888.18 35.86
NBTM 3117.02 45.68
NBTMC 2900.64 28.88

Table 3. Variances of spatial effects.

Spatial effect Mean Sd 2.5% 50% 97.5% Min Max

Structured 0.1703 0.0827 0.0696 0.1498 0.3843 0.0414 0.6149
Unstructured 0.4595 0.1525 0.2387 0.4312 0.8321 0.1705 1.2645

sampling zeroes. That zero-inflated models fit better than their corresponding non-zero-
inflated counterparts match the results from the exploratory data analysis. The structural
zeros and sampling count distribution in a Poisson–Bernoulli mixturemodel can provide a
moremeaningful and precise interpretation of the clusters, activity and quiescence, under-
lying the observed feature of diverging trajectories in Figure 2. Under the same sampling
distribution, the NBTMC fits the best based on the DIC in Table 2. The Poisson regression
model and the Poisson-gammamixturemodels with only pure spatial component are infe-
rior to the other models in terms of DIC. This suggests the significance of spatio-temporal
effect on the response.

The DIC values for the 12 models under consideration indicate a clear preference for
the NBTMC-based Poisson–Bernoulli mixture model with the lowest DIC. The NBTMC-
based Poisson–Bernoulli mixture model was selected to account for the excess structural
zeros as well as the structural effect on the trajectories. We primarily focus on the results
related to the research questions addressed by GBTM as discussed in the Introduction.

Figure 5 shows the relative estimated variation of the spatial effects: the range of the esti-
mated unstructured effects clearly exceeds that of the structured effects. This implies that
the spatial heterogeneity appears to be caused more by local circumstances of the loca-
tions than the influences from their neighbors responsible for the clear bifurcation in the
increasingly divergent trajectories observed in Figure 2, with one cluster of trajectories
illustrating a positive impact of temporal components (in year) while the other cluster of
trajectories showing poor relation to time. The increasing dispersion is as a result of the
unbalanced inherent latent socio-economic factors in addition to environmental condi-
tions across the country: the regions differ in their local statutes, organization, funding, and
policies regarding their justice systems. Themean of the variance for unstructured random
effects is about 2.7 times that of the variance for structured random effects. When compar-
ing the standard deviations of the effects, the standard deviation for unstructured random
effects is 1.8 times that of the variance for structured random effects. When comparing
the effects on 2.5% quantile to 97.5% quantile, the unstructured random effects have 95%
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Figure 5. Estimated spatial effects: structured spatially correlated heterogeneity (top), unstructured
spatial heterogeneity (middle) and total spatial heterogeneity (bottom).

Figure 6. Geographical mapping of the posterior mean estimates of total spatial effects.

credible interval [0.2387, 0.8321] with median 0.4312 compared to the 95% credible inter-
val [0.0696, 0.3843] with median 0.1498 for structured random effects. The geographical
mapping of the estimated spatial effect in Figure 6 further indicates the spatial distribution
of growing disparity among the regions.

In addition, the NBTM unveils a new interesting logistic growth phenomenon for the
systemdynamics [50]. The logistic growth curve is restricted by the realistic resources satu-
rated in environmental constraints that are associated with the different regimes regarding
political, social and economic changes in a period. The logistic growth theoretically orig-
inates from the study of human population dynamics. It has since been used to explain
many biological and chemical phenomena. Following a scientific revolution of a system,
progress generally follows a sigmoid curve: it starts with a period of fast progress, which
gradually stabilizes as the system reaches the limitations of resource constraints, called
carrying capacity that the environmental resources can support, and then further improve-
ments become incremental. Figure 7 charts out the pronounced progression curve which
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Figure 7. The posterior mean estimate of the dynamic effect revealing the phases of growth.

is significant in the sense that at least the 80% and 95% pointwise credible bands do not
cover the zero line fully for distinct time-based clusters by the characteristic points of
inflection. The result indicates that the growth rates of the developmental trajectories are
time-varying: the rate of growth is faster for the inception of a new or innovative system in
the beginning period and slows down later due to underlying competition for active and
quiescent sources.When the system reaches an equilibrium state, namely, a saturation level
characteristic of the environment in a period, the growth rate is close to zero. In contrast
to parametric GBTM marking the distinctive periods of quiescence in the life course to
address the ‘hot topic’ of the time about the criminal career debate, nonparametric NBTM
identifies the abrupt transitions by the characteristic points of inflection for the distinctive
time-based clusters in the spatio-temporal process between different regimes, revealing the
phases of inception, expending, disruption, developing, and formulating: The estimated
developmental trajectory climbs up as a J curve for the first 9 years ended at the year 1958
(1949–1958), reflecting a new system expansion. Then the dynamics has almost no signifi-
cant influence for the next 20 years (1959–1979) until the end of the disruptive innovation
in year 1979 for another logistic growth. After the disruptive innovation of open system
there is a rapid increase for a few years. Finally, the chart shows the stable dynamics again
in the range of observations.

Furthermore, the statistical patterns can be easily understood when the substantive
map of spacetime is exploited to add vital context to express data for the diffusion and
growth phenomenon. The distinctive time-based clusters are criminologically in line with
the substantial contextual knowledge about the disruptive social innovations in the years
of the survey. Since 1949, the PRC has experienced distinct political and economic cir-
cumstances. In 1949, the revolutionary innovation took place that the newly founded
communist government declared that all the laws from the old regime were repealed and
all the legal organs from the old regime were dissolved. The central government set up the
Supreme People’s Procuratorate and other legal organs. Following the trend, local govern-
ments at the province, prefecture and county levels also set up people’s procuratorates and
other legal agencies. Starting in the second half year of 1957, the disruptive Anti-Rightist
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Campaign started. Law and criminal justice organs were seriously criticized not to obey
the leadership of the Chinese Community Party and almost stagnated during 1958-1965.
From 1966 to 1976, Chinese People’s Liberation Army controlled courts, procuratorates
and public security organs. When another disruptive innovation took place that the third
plenary session of the 11th Central Committee of Communist Party of China was held in
1978, market reform started and rule by law was stressed to move the focus of the criminal
justice system from class struggle to economic development. The development of crim-
inal justice system was resumed and many more new procuratorates were created since
1978. Given a new distinct circumstance during 1979–2004 in contrast to 1949–1978, fac-
tors such as urbanization, population, economic level and crime rate may be expected to
affect the developmental trajectory. In the course of moving toward a free market economy
during 1979–2004, China was experiencing new types of crimes as well as crimes of a mag-
nitude that did not exist before 1978. The new findings not only point to avenues of further
inquiry in the domain but also suggest the substantial methodological value of the NBTM
approach in understanding the dynamics of a system since it sheds light on a variety of
subjects of interest to academics. With observational data, we never select the ‘true’ model
and do not claim that the representation we proposed is optimal or unique. Instead, we
make the claim that the proposed NBTM is effective, understandable, and transparent in
the sense of reasoning under uncertainty compared to the existing GBTM. The modeling
allows us to learn about or predict the spatio-temporal process and focus on new features
of the data about which we were unaware.

5. Discussion

We propose NBTM augmented with additional STPN as structural constraints to accom-
modate complex growth characteristics in spacetime for revealing and understanding
system dynamics. Methodologically, the proposed modeling is an extension and refine-
ment of the existing parametric group-based trajectorymodeling thatwas laid out byNagin
and Land to address the issues related to the ‘hot topic’ of criminal career debate [29,30].
It moved the formation of complexity and comprehensibility of trajectory modeling fur-
ther in spatial and temporal dimensions within the scope of computational tractability
provided by current algorithm and technology with mixture modeling for every space-
based, time-based or non-ST feature-based cluster of trajectories. First, the nonparametric
representation of NBTM can unveil the presence of more interpretable nonlinear growth
dynamics with the context of STPN in contrast to the polynomial representation of GBTM
specified for the presence of single peaked or flat of developmental trajectories. Second, the
proposed NBTM conducts sensitivity analysis by a more general parameterization of mix-
ing that enables the sampling distribution sufficiently flexible to approximate any realistic
distribution to some desired degree of accuracy. The modeling can be considered as the
hierarchical mixtures-of-experts (HMEs), combining aspects of finite mixture models and
generalized nonlinear models. The mixture of generalized mixed effects models provides a
comparatively fast learning and good generalization for nonlinear complex problems [26].

The modeling has practical implications in statistical learning. STPNs add vital con-
text to express data dynamically with contextual understanding and better interpreta-
tion of growth and diffusion phenomena. With a marriage between graph theory and
probability theory of hierarchical modeling, what is the investigator’s understanding
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(knownor assumed) of dynamics is transparent andwhat are the scientific queries (associa-
tion or causation) is explicit for a spatio-temporal process under study. The dynamic graph
is represented as a hybrid chain graph that respects the asymmetry in temporally directed
relationships augmented primarily with spatially symmetrical relationships in undirected
Markov network that denotes the existence of unobserved common causes by the Com-
mon Cause Principle of Reichenbach [40] where certain patterns of dependency, void of
temporal information, are conceptually characteristic of certain causal directionalities [36].
When the structure of spatio-temporal parse network is integrated with the dependence
structure of associated events in statistical hierarchical modeling, further causal inference
methodology can be established, incorporating the benefits of machine learning with sta-
tistical inference that we have been working on. Although the method is elaborated on the
application in the trajectory modeling of criminal system, we believe that the proposed
NBTMwith data-driven shrinkage towards the existing GBTM is transferable between the
criminology and other substantive disciplines where the existing GBTM have successfully
applied in the form of graphical and tabular data summaries accessible to nontechnical
audiences and quickly comprehensible to technically sophisticated audiences.

A few limitations of this study were noted for future research. First, the spatio-temporal
analysis on networking event should include the analysis of a network itself, such as
geographical network analysis [13], communication network analysis [19], and circuit net-
work analysis [48]. From the methodological perspective, the hierarchical architecture of
the proposed STPN-based probabilistic representation allows the approaches developed
from high-dimensional statistics and machine learning to combine with the techniques
developed from the emerging network science. To search among different granularities
for true discoveries, strong predictive power and interpretability of substantive spatio-
temporal parse networks, statistical hypothesis significance testing can be introduced as an
assessment of an alternative network against the proposed null network to address the over-
partition or under-partition in discovering important substructures. However, the analysis
of a network itself is non-trivial and often requires domain expertise since a network space
does not imply a space consisting of networks [42] like a function space in mathematics
[38]. In the network-constrained trajectory statistical analysis, the computation based on
the measure of the shortest path distance is much more difficult than that of Euclidean
distance because it requires the management of network topology. We used a meaning-
ful level of granularity of network in our demonstration, where we exploited a technique
of lowering the resolution of the representation of the spatio-temporal random effects to
make model fitting faster. Our research can be improved by taking further analysis of the
network itself that is beyond the scope of this paper. We intend this paper to contribute a
first step toward micro-scale spatial analysis by spatio-temporal parse network-based tra-
jectory modeling and develop further micro-scale spatial analysis in the future work to
address the challenge of real-time spatial analysis.

Second, the practical problems in applied statistics are, by and large, computational in
nature [45]. The scalability of model fitting is challenging in the spatio-temporal parse
network-based trajectory modeling from simple to adequate graph support for inference
and learningwith high-dimensional data. Given thatmany situations onmultivariate (con-
ditional) density approximation require a reasonably large number of components and
each component will have a very large number of parameters, efficient algorithms that
can handle very high-dimensional spaces will be required for inference methods and is
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still under ongoing research and development to the potential to address the simultaneous
challenges encountered by all the fields. In practice, it requires much more CPU time and
memory cost to implement the computational methods in a statistical model constrained
alongside a more refined dynamic network graph in software.

Third, specification of hyperpriors in hierarchical models is still an area of method-
ological research. Further work needs to be done on the selection of good, sensible
default hyperpriors for precision parameters specific to the proposed models with the
spatial-temporal interaction for different goals, in which is technically involved.
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